Reactions of Platinum(II) Complexes. Part 2.¹ Catalysis of the Aquation of Tetrachloroplatinate(II) Ion by Trichloro(η -ethylene)platinate(II) (Zeise's Anion)

By Michael Green • and Michael G. Swanwick, Department of Chemistry, University of York, Heslington, York YO1 5DD

The reaction $[PtCl_4]^{2-} + H_2O \longrightarrow [PtCl_3(OH_2)]^- + Cl^-$ proceeds faster in the presence of $[PtCl_3(C_2H_4)]^-$, although the effect tends to be nullified gradually by increasing concentration of chloride ion. The actual catalyst is considered to be *trans*- $[PtCl_2(C_2H_4)(OH_2)]$ since the increase in rate is proportional to the concentration of this complex.

In the course of studying the kinetics of the reaction $[PtCl_4]^{2-} + C_2H_4 \longrightarrow [PtCl_3(C_2H_4)]^- + Cl^-$ we observed that $K[PtCl_3(C_2H_4)]$, or some species readily derived from it, perhaps catalysed the substitution processes (1) and (-1). Details of the catalysis are reported here.

$$[PtCl_4]^{2-} + H_2O \rightleftharpoons [PtCl_3(OH_2)]^- + Cl^- \quad (1)$$

RESULTS AND DISCUSSION

The rate of reaction (1) at 25.0 °C was followed spectrophotometrically in the absence and presence of $K[PtCl_3(C_2H_4)]$, in the concentration ranges $1 \times 10^{-3} \leq [K_2PtCl_4] \leq 1 \times 10^{-2}$ mol dm⁻³ and $1 \times 10^{-4} \leq [KPtCl_3(C_2H_4)] \leq 1.5 \times 10^{-3}$ mol dm⁻³. Ionic strength was maintained at 0.5 mol dm⁻³ using HClO₄ and HCl, the latter being used to vary [Cl⁻]. The relation between time and concentration for a reversible reaction, pseudo-first order in the forward direction and second order in the reverse direction, is given by (2), an equation which is not easy to handle in this context. Where t = time,

e denotes equilibrium, $x = [PtCl_4^{2-}]_t - [PtCl_4^{2-}]_e, b = k_{-1}, a = k_1 + k_{-1} \{ [PtCl_3(OH_2)^-]_e + [PtCl_4^{2-}]_e \}, and k_{-1} = K_1k_1$. Therefore values of k_1 were obtained from gradients of rate curves extrapolated to zero time. Taking ^{2,3} K_1 as 1.26×10^{-2} mol dm⁻³, we substituted the values so obtained in equation (2) and were able to verify that it applies to within 10% when $[Cl^-] \ge 10^{-2}$ mol dm⁻³. The poorer agreement below this chloride concentration is not surprising as reactions (3) and (-3)

$$[PtCl_3(OH_2)]^- + H_2O \Longrightarrow [PtCl_2(OH_2)_2] + Cl^- \quad (3)$$

are known, K_3 being ^{2,3} 1.4×10^{-3} mol dm⁻³. Unfortunately, the catalytic activity of K[PtCl₃(C₂H₄)] is small when [Cl⁻] $\geq 10^{-2}$ mol dm⁻³, so, while initial gradients in this range are justified as a means of obtaining rates, we were forced to use those at lower chloride-ion concentration without rigorous validation. Because of serious possible complications due to (3), the lowest [Cl⁻] used was 2×10^{-3} mol dm⁻³, thus, in effect, $2 \times 10^{-3} \leq [Cl^-] \leq 2 \times 10^{-2}$ mol dm⁻³.

³ L. I. Elding, Acta Chem. Scand., 1970, 24, 1331.

$$t = (1/a) \ln \left[(bx_t - a) x_0 / (bx_0 - a) x_t \right]$$
 (2)

¹ Part 1, M. Green and C. J. Wilson, J.C.S. Dalton, 1977, 2302.

² L. I. Elding and I. Leden, Acta Chem. Scand., 1966, 20, 706.

The rate of reaction (1) increases with increasing concentration of $K[PtCl_3(C_2H_4)]$, but is inversely related to chloride-ion concentration. This suggests that it is not $[PtCl_3(C_2H_4)]^-$ itself which catalyses the reaction, but a derivative. Equilibrium (4) is known to be established very rapidly; the inverse relation in $[Cl^-]$

$$[PtCl_3(C_2H_4)]^- + H_2O \Longrightarrow trans-[PtCl_2(C_2H_4)(OH_2)] + Cl^-$$
(4)

might be explained if the aqua(olefin) complex were the actual catalyst. This was verified by plotting graphs of rates against concentration of *trans*-[PtCl₂(C₂H₄)-(OH₂)] taking ^{4,5} K_4 as 3.0×10^{-3} mol dm⁻³, straight lines being obtained as in the Figure. A regression analysis of all the rate constants, $k_{\rm obs.}$, for catalysed reaction (1) gave (5) and $k_0 = (3.8 \pm 0.1) \times 10^{-5}$ s⁻¹ which agrees ⁶ nicely with Elding's value of 3.7×10^{-5} s⁻¹

$$k_{\text{obs.}} = \{k_0 + k_{\text{cat.}}[\text{PtCl}_2(\text{C}_2\text{H}_4)(\text{OH}_2)]\}[\text{PtCl}_4^{2-}]$$
 (5)

for k_1 in the uncatalysed process; $k_{\rm cat.} = (4.2 \pm 0.1) \times 10^{-2} \, {\rm dm^3 \ mol^{-1} \ s^{-1}}$.

Several reactions are known to involve diplatinum species ⁷ and it is suggested here that the scheme in (6) occurs, the chloro(olefin) and aqua(olefin) complexes

Plot of rate against the concentration of trans-[PtCl₂(C₂H₄)(OH₂)] for reaction (1): $[K_2PtCl_4] = 2 \times 10^{-3} \text{ mol } dm^{-3}$. $[Cl^-] = 2.25 \times 10^{-2} (\blacksquare), 5.0 \times 10^{-2} (\blacktriangle), \text{ and } 10.0 \times 10^{-2} \text{ mol } dm^{-3} (\bullet)$

being interchanged by reaction (4). Possibly, it is the lower nucleophilic character of H_2O compared with Cl^- towards Pt^{II} which enables $[PtCl_2(C_2H_4)(OH_2)]$ but not

* 1 atm = 101 325 Pa.

- ⁴ I. Leden and J. Chatt, J. Chem. Soc., 1955, 2936.
- ⁵ S. J. Lokken and D. S. Martin, Inorg. Chem., 1963, 2, 562.

 $[PtCl_3(C_2H_4)]^-$ to react with $[PtCl_4]^{2-}$. The ratedetermining step in (6) is (6a), so that k_{6a} is $(4.2 \pm 0.1) \times 10^{-2}$ dm³ mol⁻¹ s⁻¹.

EXPERIMENTAL

Potassium tetrachloroplatinate(II), to be used for kinetics, was recrystallised twice from 2 mol dm⁻³ HCl and dried *in vacuo*. The salt K[PtCl₃(C₂H₄)] was prepared by the action of ethylene on K₂[PtCl₄] in 2 mol dm⁻³ HCl at 30 atm (no catalyst being used).* It was recrystallised twice from 2 mol dm⁻³ HCl and dried under high vacuum to remove water of crystallisation.

The reaction was followed using a Cary 14 spectrophotometer. Mixtures were kept at 25.0 ± 0.1 °C in vessels from which light was excluded. Samples were removed from time to time, and their spectra were recorded at *ca.* 315 nm. Absorption coefficients for $[PtCl_4]^{2-}$ and $[PtCl_3(OH_2)]^-$ agreed with those of Elding ³ within experimental error.

[7/851 Received, 16th May, 1977]

- ⁶ L. I. Elding, Acta Chem. Scand., 1970, 24, 1341.
- 7 D. S. Martin, Inorg. Chim. Acta Rev., 1967, 1, 87.